Name: \qquad
\qquad
Worksheet 6-1: Properties of Similar Triangles
Two triangles are similar if

(i) the corresponding angles are equal

and
(ii) the lengths of the corresponding sides are proportional.

Do you know how to name the sides and angles of a triangle?
$\Delta \mathbf{A B C} \sim \Delta \mathbf{P Q R}$ (Triangle ABC is similar to Triangle PQR)

So, $\angle \mathrm{A}=\angle \mathrm{P}$

$$
\begin{aligned}
& \angle \mathrm{B}=\angle \mathrm{Q} \\
& \angle \mathrm{C}=\angle \mathrm{R}
\end{aligned}
$$

Similar triangle properties:

Complete each statement about the given pair of similar triangles.
$\frac{A B}{D E}=\frac{A C}{?}$
$\frac{B C}{E F}=\frac{?}{D F}$
$\frac{A C}{D F}=\frac{A B}{?}$

$$
\angle A=\angle ?
$$

$$
\angle B=\angle ?
$$

Assigned Work: WS 6-1; Text: p. 333 \#4-9, \#14-15

Name: \qquad Date: \qquad
Example 1: Find the missing angles using similar triangle properties.
Given: $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$.
Find the measures of $\angle \mathrm{C}, \angle \mathrm{P}$, and $\angle \mathrm{Q}$, to the nearest degree.

Example 2: Find the missing sides using similar triangle properties.
Given $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$.
Find the length of sides b and d. The measures are in centimetres.

Name: \qquad Date: \qquad WS 6-1

How do you know that two triangles are similar when only the angle measures of the two triangles are given?

How do you know that two triangles are similar when only the side lengths of the two triangles are given?

Example 3: Showing and Using Similarity
(a) Show why $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{EDC}$.

(b) Find the lengths x and y.

Answers: Ex.1. $\angle \mathrm{C}=85^{\circ}, \angle \mathrm{P}=20^{\circ}, \angle \mathrm{Q}=75^{\circ}$; Ex.2. $b=8 \mathrm{~cm}, d=18 \mathrm{~cm}$;
Ex.3. (a) $\angle \mathrm{A}=\angle \mathrm{E}$ (alternate angles), $\angle \mathrm{B}=\angle \mathrm{D}$ (alternate angles), $\angle \mathrm{ACB}=\angle \mathrm{ECD}$ (opposite angles), (b) $x=7.5 \mathrm{~cm}, y=10.5 \mathrm{~cm}$.

Name: \qquad Date:

Practice:

1. In $\Delta \mathrm{MNP}, m=7 \mathrm{~cm}, n=6 \mathrm{~cm}$, and $p=4 \mathrm{~cm}$. In $\Delta \mathrm{HJK}, h=17.5 \mathrm{~cm}, j=15 \mathrm{~cm}$, and $k=10 \mathrm{~cm}$. Show that $\triangle \mathrm{MNP} \sim \Delta H J K$. (Hint: Sketch and label the two triangles.)
2. Given $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$, find the measure of $\angle \mathrm{C}$ and the length of DE to the nearest tenth of a unit.

Name: \qquad
\qquad
3. Find the length of FG to the nearest tenth of a unit.

Note: When the two triangles are not stated "similar" in a question, you MUST prove that they are similar before you can apply the similar triangle properties.

4. In the diagram, DE is parallel to AC. Find the length of AC. Note: When the two triangles are not stated "similar" in a question, you MUST prove that they are similar before you can apply the similar triangle properties.

Answers: 2. $\angle \mathrm{C}=31^{\circ}$, $\mathrm{DE}=9.7$; 3. $\angle \mathrm{FJG}=\angle \mathrm{IJH}$ (Alternate Angles), $\angle \mathrm{G}=\angle \mathrm{H}, \angle \mathrm{F}=\angle \mathrm{I}$ (Interior Angle Sum), $\Delta \mathrm{FJG} \sim \Delta \mathrm{IJH}, \mathrm{FG}=12.9 ; 4 . \angle \mathrm{B}=\angle \mathrm{B}$ (Common), $\angle \mathrm{A}=\angle \mathrm{D}$ (Corresponding Angles), $\angle \mathrm{C}=\angle \mathrm{E}, \triangle \mathrm{ABC} \sim \triangle \mathrm{DBE}, \mathrm{AC}=45 \mathrm{~cm}$

